Crystallographic report

Bis(N,N-dibenzyldithiocarbamato)mercury(II)

Chian Sing Lai and Edward R. T. Tiekink*

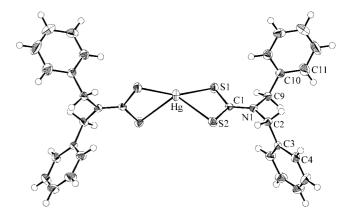
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore

Received 7 November 2003; Revised 8 November 2003; Accepted 9 November 2003

The monomeric structure of $Hg[S_2CN(CH_2Ph)_2]_2$, in which the mercury atom lies on a two fold axis that relates the unsymmetrically chelating dithiocarbamate ligands, features a severely distorted tetrahedral geometry. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; mercury; dithiocarbamate

COMMENT


The mercury atom in Hg[S₂CN(CH₂Ph)₂]₂, Fig. 1, lies on a two fold axis and exists in a grossly distorted tetrahedral geometry as the result of two unsymmetrically coordinating dithiocarbamate ligands. This structure, along with the isomorphous zinc analogue,¹ is consistent with 'steric control over molecular aggregation' for zinc-triad 1,1-dithiolate structures.² As such, the mercury (and zinc¹) structure is a member of the least common, i.e. monomeric, motif owing to the steric bulk of the N-bound groups. In this context, it is interesting that the dimeric cadmium analogue³ is consistent with known structures owing to its uncluttered dimeric motif.²

Experimental and Results

Colourless crystals, prepared by standard methods, ⁴ were obtained from the slow evaporation of a chloroform solution of the compound; m.p. 209–210 °C. IR (KBr): ν (C–S) 999 and ν (C–N) 1474 cm⁻¹.
¹H NMR (CDCl₃): δ = 5.02 [s, 2H, CH₂], 7.34–7.43 ppm [complex pattern, 5H, aromatic].
¹³C NMR: δ = 206.8 [C_{quat}], 134.5 [C_{ipso}], 129.3 [C_{ortho}], 128.2 [C_{meta}], 127.4 [C_{para}], 58.1 ppm [CH₂]. Intensity data were collected at 223 K on a Bruker AXS SMART CCD for a colourless plate $0.05 \times 0.16 \times 0.31$ mm³. C₃₀H₂₈HgN₂S₄, M = 745.37, orthorhombic, *Pbcn*, a = 16.3851(5), b = 18.5774(6), c = 9.3190(3) Å, V = 2836.63(16) Å³, Z = 4, 4124 unique data (θ _{max} 30.0°), 3271 data with I \geq 2 σ (I), R 0.050 = (obs. data), vR 0.103 = (all data); ρ _{max} = 2.13 e⁻ Å⁻³ (near mercury). Programs used: teXsan, DIRDIF, SHELXL-97 and ORTEP. CCDC deposition number: 223843.

*Correspondence to: Edward R. T. Tiekink, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore. E-mail: chmtert@nus.edu.sg

Contract/grant sponsor: National University of Singapore; Contract/grant number: R-143-000-213-112.

Figure 1. Molecular structure of $Hg[S_2CN(CH_2Ph)_2]_2$. Key geometric parameters: Hg-S1 2.3968(12), Hg-S2 2.7896(12), C1-S1 1.753(4), C1-S2 1.703(4) Å; S1-Cd-S2 69.69(4), $S1-Cd-S1^i$ 160.34(6), $S1-Cd-S2^i$ 121.90(4), $S2-Cd-S2^i$ 115.86(5)°. Symmetry operation i: -x, y, 1/2-z.

Acknowledgements

The National University of Singapore (R-143-000-213-112) is thanked for support.

REFERENCES

- Decken A, Gossage RA, Chan MY, Lai CS, Tiekink ERT. Appl. Organomet. Chem. 2004; 18: 101.
- 2. Tiekink ERT. CrystalEngComm 2003; 5: 101.
- 3. Yin X, Zhang W, Zhang Q, Fan J, Lai CS, Tiekink ERT. *Appl. Organomet. Chem.* 2003; **18**: in press.
- 4. Cox MJ, Tiekink ERT. Z. Kristallogr. 1999; 214: 571.